Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662224

RESUMO

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Assuntos
Sobrevivência Celular , Peróxido de Hidrogênio , Melanócitos , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Adulto , Feminino , Proliferação de Células/genética , Pele/patologia , Pele/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Biópsia , Adolescente , Adesão Celular/genética
2.
Commun Biol ; 7(1): 275, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443437

RESUMO

Transparent immunodeficient animal models not only enhance in vivo imaging investigations of visceral organ development but also facilitate in vivo tracking of transplanted tumor cells. However, at present, transparent and immunodeficient animal models are confined to zebrafish, presenting substantial challenges for real-time, in vivo imaging studies addressing specific biological inquiries. Here, we employed a mitf-/-/prkdc-/-/il2rg-/- triple-knockout strategy to establish a colorless and immunodeficient amphibian model of Xenopus tropicalis. By disrupting the mitf gene, we observed the loss of melanophores, xanthophores, and granular glands in Xenopus tropicalis. Through the endogenous mitf promoter to drive BRAFV600E expression, we confirmed mitf expression in melanophores, xanthophores and granular glands. Moreover, the reconstruction of the disrupted site effectively reinstated melanophores, xanthophores, and granular glands, further highlighting the crucial role of mitf as a regulator in their development. By crossing mitf-/- frogs with prkdc-/-/il2rg-/- frogs, we generated a mitf-/-/prkdc-/-/il2rg-/- Xenopus tropicalis line, providing a colorless and immunodeficient amphibian model. Utilizing this model, we successfully observed intravital metastases of allotransplanted xanthophoromas and migrations of allotransplanted melanomas. Overall, colorless and immunodeficient Xenopus tropicalis holds great promise as a valuable platform for tumorous and developmental biology research.


Assuntos
Anuros , Peixe-Zebra , Animais , Citoplasma , Xenopus/genética , Peixe-Zebra/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo
3.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456491

RESUMO

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Assuntos
Cobalto , Fator de Transcrição Associado à Microftalmia , Neoplasias , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Sumoilação , Linhagem Celular Tumoral , Poliploidia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Movimento Celular , Proliferação de Células
4.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
5.
Cell Death Dis ; 15(3): 208, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472212

RESUMO

Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.


Assuntos
Melanoma , MicroRNAs , Humanos , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Recidiva Local de Neoplasia/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Mol Cell ; 84(4): 727-743.e8, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325378

RESUMO

Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.


Assuntos
Neoplasias Renais , Fator de Transcrição Associado à Microftalmia , Humanos , Células HeLa , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteólise , Autofagia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas/metabolismo , Neoplasias Renais/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
7.
Genes Dev ; 38(1-2): 70-94, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316520

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Assuntos
Melanoma , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Dano ao DNA , Instabilidade Genômica/genética , DNA
8.
Exp Mol Med ; 56(2): 311-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351314

RESUMO

Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells. Therefore, this review is focused on recent advances in elucidating novel functions of MITF in cancer progression and immune responses to cancer. In particular, we highlight the role of MITF as a central modulator in the regulation of immune responses, as elucidated in recent studies.


Assuntos
Melanoma , Fator de Transcrição Associado à Microftalmia , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Melaninas
9.
Mikrochim Acta ; 191(1): 73, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170285

RESUMO

A novel electrochemical biosensor that combines the CRISPR-Cas12a system with a gold electrode is reported for the rapid and sensitive detection of microphthalmia-associated transcription factor (MITF). The biosensor consists of a gold electrode modified with DNA1, which contains the target sequence of MITF and is labeled with ferrocene, an electroactive molecule. The biosensor also includes hairpin DNA, which has a binding site for MITF and can hybridize with helper DNA to form a double-stranded complex that activates CRISPR-Cas12a. When MITF is present, it binds to hairpin DNA and prevents its hybridization with helper DNA, thus inhibiting CRISPR-Cas12a activity and preserving the DPV signal of ferrocene. When MITF is absent, hairpin DNA hybridizes with helper DNA and activates CRISPR-Cas12a, which cleaves DNA1 and releases ferrocene, thus reducing the DPV signal. The biosensor can detect MITF with high sensitivity (with an LOD of 8.14 fM), specificity, and accuracy in various samples, such as cell nuclear extracts and human serum. The biosensor can also diagnose and monitor melanocyte-related diseases and melanin production. This work provides a simple, fast, sensitive, and cost-effective biosensor for MITF detection and a valuable tool for applications in genetic testing, disease diagnosis, and drug screening.


Assuntos
Sistemas CRISPR-Cas , Fator de Transcrição Associado à Microftalmia , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Metalocenos , Ouro , DNA/genética
10.
Int J Biol Sci ; 20(1): 312-330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164184

RESUMO

Background: The cAMP response element-binding protein (CREB) and CREB-regulated transcription coactivators (CRTCs) cooperate in the transcriptional activation of microphthalmia-associated transcription factor subtype M (MITF-M) that is a master regulator in the biogenesis, pigmentation and transfer of melanosomes at epidermal melanocytes. Here, we propose the targeting of phosphorylation circuits on CREB and CRTCs in the expression of MITF-M as the rationale to prevent skin hyperpigmentation by elucidating the inhibitory activity and mechanism of yakuchinone A (Yaku A) on facultative melanogenesis. Methods: We employed human epidermal melanocyte cell, mouse skin, and mouse melanoma cell, and applied Western blotting, reverse transcription-polymerase chain reaction, immunoprecipitation and confocal microscopy to conduct this study. Results: This study suggested that α-melanocyte stimulating hormone (α-MSH)-induced melanogenic programs could switch on the axis of protein kinase A-salt inducible kinases (PKA-SIKs) rather than that of PKA-AMP activated protein kinase (PKA-AMPK) during the dephosphorylation of CRTCs in the expression of MITF-M. SIK inhibitors rather than AMPK inhibitors stimulated melanin production in melanocyte cultures in the absence of extracellular melanogenic stimuli, wherein SIK inhibitors increased the dephosphorylation of CRTCs but bypassed the phosphorylation of CREB for the expression of MITF-M. Treatment with Yaku A prevented ultraviolet B (UV-B)-irradiated skin hyperpigmentation in mice and inhibited melanin production in α-MSH- or SIK inhibitor-activated melanocyte cultures. Mechanistically, Yaku A suppressed the expression of MITF-M via dually targeting the i) cAMP-dependent dissociation of PKA holoenzyme at the upstream from PKA-catalyzed phosphorylation of CREB coupled with PKA-SIKs axis-mediated dephosphorylation of CRTCs in α-MSH-induced melanogenic programs, and ii) nuclear import of CRTCs after SIK inhibitor-induced dephosphorylation of CRTCs. Conclusions: Taken together, the targeting phosphorylation circuits on CREB and CRTCs in the expression of MITF-M could be a suitable strategy to prevent pigmentary disorders in the skin.


Assuntos
Hiperpigmentação , Melaninas , Humanos , Animais , Camundongos , Melaninas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosforilação , alfa-MSH/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Melanócitos/metabolismo , Hiperpigmentação/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
11.
Biosci Rep ; 44(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38054639

RESUMO

Vitiligo is characterized by the development of white patches on the skin either due to the loss of functional melanocytes or perturbations in the melanogenesis pathway. In the present study, we investigated the therapeutic potential of herbo-mineral formulation, Melanogrit in neutralizing the white patches in the skin. The study utilized UPLC/MS-QToF technique to determine the diversified phytochemical profile in Melanogrit. The murine B16F10 cells when treated with Melanogrit underwent morphological changes, including increased angularity, enlarged cell size, and greater dendritic protrusions. To establish an equivalent model to study melanogenesis, we carefully optimized the dosage of α-melanocyte stimulating hormone (αMSH) in B16F10 cells as an alternative to using melanocyte-keratinocyte cocultures. The study determined a sub-optimal dose of αMSH (0.2 nM) in B16F10 cells that does not manifest any measurable effects on melanogenesis. In contrast, Melanogrit when used in conjunction with 0.2 nM αMSH, induced a dose-dependent increase in extracellular and intracellular melanin levels. Melanogrit transcriptionally up-regulated the decisive genes of the melanogenesis pathway, MITF, TYR, and TRP1, which was evident from the increased cellular tyrosine activity. Our findings also demonstrated that Melanogrit ameliorated the MITF protein levels by inhibiting pERK; notably without involving GSK3ß in the process. Taken together, our findings strongly suggest that Melanogrit has the potential to stimulate melanogenesis, making it a promising candidate for clinical applications in the treatment of white skin patches that develop in vitiligo patients.


Assuntos
Monofenol Mono-Oxigenase , Vitiligo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/farmacologia , Transdução de Sinais , Vitiligo/metabolismo
12.
Poult Sci ; 103(1): 103191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980740

RESUMO

The coloration of plumage in poultry species has substantial economic significance. Putian black ducks encompass 2 distinct strains characterized by black and white plumage variations resulting from selective breeding. This study aimed to identify the molecular mechanisms responsible for plumage coloration in these 2 distinct strains. A comprehensive genome-wide association study was conducted using DNA data sourced from a F2 segregating population, consisting of 71 individuals with black plumage and 39 individuals with white plumage, derived from these distinct 2 strains. This analysis revealed that 894 nucleotide polymorphisms and identified 58 candidate genes. Subsequent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes coenrichment analyses identified MITF as a key candidate gene implicated in melanin biosynthesis. Furthermore, extensive screening of significant polymorphic loci within MITF was carried out via mass spectrometry in 3 distinct populations: 100 individuals with black plumage and 100 individuals with white plumage from the F0 generation; and 50 with black plumage form the F1 generation). Eighteen candidate polymorphic loci were identified demonstrating significant associations with variations in black and white plumage. Notably, 8 of these loci were located within the 2,000 bp region upstream of MITF-M. To validate the critical regulatory role of MITF-M in black and white plumage formation, a dual-fluorescence reporter system was constructed, and dual-fluorescence activity was assessed. The results revealed that the fluorescence activity at wild-type sites (corresponding to black plumage) was significantly higher than that at the mutant-type sites (associated with white plumage) (P < 0.01). To corroborate the pivotal role of MITF-M in black and white plumage formation, qPCR was employed to evaluate the expression levels of various MITF variants in black and white feather bulbs. This analysis demonstrated that only MITF-M exhibited specific expression in black feather bulbs. These results elucidate the central role of polymorphic mutations within the MITF promoter region in the regulation of black and white plumage coloration in Putian black ducks. This study extends our understanding of mechanisms governing duck plumage coloration and provides valuable molecular markers for future research in duck production and breeding based on plumage coloration.


Assuntos
Patos , Melaninas , Humanos , Animais , Patos/genética , Melaninas/genética , Estudo de Associação Genômica Ampla/veterinária , Galinhas/fisiologia , Melhoramento Vegetal , Plumas/química , Regiões Promotoras Genéticas , Mutação , Pigmentação/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/análise
13.
Pharmacology ; 109(1): 52-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38016436

RESUMO

INTRODUCTION: Cancer stem cells (CSCs) play critical roles in lung adenocarcinoma (LUAD) progression, and fatty acid oxidation is key for CSC growth and survival. Therefore, investigating the molecular mechanisms regulating fatty acid ß-oxidation in LUAD is important for its treatment. METHODS: Bioinformatics analysis assessed CPT1B and MITF expression and their correlation in LUAD tissues, as well as the pathways enriched by CPT1B. qRT-PCR assessed expression of CPT1B and MITF, while CCK-8 and sphere-forming assays were used to measure cell viability and stemness, respectively. Dual staining detected lipid accumulation, while kits were used to measure fatty acid ß-oxidation and glycerol content. qRT-PCR was used to assay expression of lipid oxidation genes. Western blot was used to examine expression of stem cell-related markers. Dual-luciferase assay and ChIP assay were used to verify the binding relationship between MITF and CPT1B. RESULTS: CPT1B was found to be highly expressed in LUAD and enriched in linoleic acid metabolism pathway and α-linolenic acid metabolism pathway. Functional experiments showed that CPT1B could promote stemness in LUAD cells by regulating fatty acid ß-oxidation. Additionally, CPT1B was found to be regulated by the upstream transcription factor MITF, which was lowly expressed in LUAD and could downregulate CPT1B expression. Rescue experiments revealed that CPT1B/MITF axis could affect stemness in LUAD cells by regulating fatty acid ß-oxidation. CONCLUSION: Transcription factor MITF inhibited transcription of CPT1B to regulate fatty acid ß-oxidation, thereby suppressing stemness in LUAD cells. MITF and CPT1B may become new targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Fatores de Transcrição , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Ácidos Graxos , Lipídeos , Proliferação de Células , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/genética , Carnitina O-Palmitoiltransferase/genética
14.
Pigment Cell Melanoma Res ; 37(1): 68-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37635363

RESUMO

MITF E318K moderates melanoma risk. Only five MITF E318K homozygous cases have been reported to date, one in association with melanoma. This novel report uses 3D total-body-photography (TBP) to describe the dermatological phenotype of a homozygous MITF E318K individual. The case, a 32-year-old male, was diagnosed with his first of six primary melanomas at 26 years of age. Five melanomas were located on the back and one in the groin. Two were superficial spreading. Three arose from pre-existing naevi and one was a rare naevoid melanoma. 3D-TBP revealed a high naevus count (n = 162) with pigmentation varying from light to dark. Most naevi generally (n = 90), and large (>5 mm diameter) and clinically atypical naevi specifically were located on the back where sun damage was mild. In contrast, naevi count was low (n = 25 total) on the head/neck and lower limbs where sun damage was severe. Thus, melanoma location correlated with naevi density, rather than degree of sun damage. In addition to the MITF E318K homozygosity, there was heterozygosity for four other moderate-risk variants, which may contribute to melanoma risk. Further research is warranted to explore whether melanomas in E318K heterozygous and other homozygotes coincide with regions of high naevi density as opposed to sun damage. This could inform future melanoma screening/surveillance.


Assuntos
Melanoma , Neoplasias Primárias Múltiplas , Nevo , Neoplasias Cutâneas , Masculino , Humanos , Adulto , Melanoma/genética , Homozigoto , Neoplasias Cutâneas/genética , Nevo/genética , Fator de Transcrição Associado à Microftalmia/genética
15.
Pigment Cell Melanoma Res ; 37(1): 21-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37559350

RESUMO

Waardenburg Syndrome (WS) is a rare genetic disorder that leads to congenital hearing loss and pigmentation defects. Microphthalmia-associated transcription factor (MITF) is one of its significant pathogenic genes. Despite the comprehensive investigation in animal models, the pathogenic mechanism is still poorly described in humans due to difficulties accessing embryonic tissues. In this work, we used induced pluripotent stem cells derived from a WS patient carrying a heterozygous mutation in the MITF gene c.626A>T (p.His209Leu), and differentiated toward melanocyte lineage, which is the most affected cell type involved in WS. Compared with the wild-type cell line, the MITFmut cell line showed a reduced expression of the characteristic melanocyte-related genes and a lesser proportion of mature, fully pigmented melanosomes. The transcriptome analysis also revealed widespread gene expression changes at the melanocyte stage in the MITFmut cell line. The differentially expressed genes were enriched in melanogenesis and cell proliferation-related pathways. Interestingly, ion transport-related genes also showed a significant difference in MITFmut -induced melanocytes, indicating that the MITF mutant may lead to the dysfunction of potassium channels and transporters produced by intermediate cells in the cochlea, further causing the associated phenotype of deafness. Altogether, our study provides valuable insights into how MITF mutation affects WS patients, which might result in defective melanocyte development and the related phenotype based on the patient-derived iPSC model.


Assuntos
Transtornos da Pigmentação , Síndrome de Waardenburg , Animais , Humanos , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , Síndrome de Waardenburg/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação/genética , Melanócitos/metabolismo
16.
Exp Cell Res ; 434(2): 113874, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070860

RESUMO

The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.


Assuntos
Transtornos da Pigmentação , Animais , Humanos , Transtornos da Pigmentação/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Cálcio/metabolismo , Peixe-Zebra/metabolismo , Melanócitos , Melaninas/metabolismo , Pigmentação , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia
17.
Gene ; 897: 148086, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104952

RESUMO

Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.


Assuntos
Crassostrea , Monofenol Mono-Oxigenase , Pigmentação , Animais , Crassostrea/genética , Crassostrea/metabolismo , Melaninas , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/genética , Pigmentação/genética
18.
Cell Death Dis ; 14(10): 704, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898636

RESUMO

Skin cutaneous melanoma (SKCM) is the deadliest form of skin cancer due to its high heterogeneity that drives tumor aggressiveness. Melanoma plasticity consists of two distinct phenotypic states that co-exist in the tumor niche, the proliferative and the invasive, respectively associated with a high and low expression of MITF, the master regulator of melanocyte lineage. However, despite efforts, melanoma research is still far from exhaustively dissecting this phenomenon. Here, we discovered a key function of Transglutaminase Type-2 (TG2) in regulating melanogenesis by modulating MITF transcription factor expression and its transcriptional activity. Importantly, we demonstrated that TG2 expression affects melanoma invasiveness, highlighting its positive value in SKCM. These results suggest that TG2 may have implications in the regulation of the phenotype switching by promoting melanoma differentiation and impairing its metastatic potential. Our findings offer potential perspectives to unravel melanoma vulnerabilities via tuning intra-tumor heterogeneity.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanócitos/metabolismo , Fenótipo , Fator de Transcrição Associado à Microftalmia/genética , Linhagem Celular Tumoral
19.
Amino Acids ; 55(11): 1687-1699, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794194

RESUMO

Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 µM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.


Assuntos
Melaninas , MicroRNAs , Humanos , Animais , Camundongos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Peptídeos/farmacologia , Linhagem Celular Tumoral
20.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834109

RESUMO

Melanogenesis, the intricate process of melanin synthesis, is central to skin pigmentation and photoprotection and is regulated by various signaling pathways and transcription factors. To develop potential skin-whitening agents, we used B16F1 melanoma cells to investigate the inhibitory effects of anhydrous alum on melanogenesis and its underlying molecular mechanisms. Anhydrous alum (KAl(SO4)2) with high purity (>99%), which is generated through the heat-treatment of hydrated alum (KAl(SO4)2·12H2O) at 400 °C, potentiates a significant reduction in melanin content without cytotoxicity. Anhydrous alum downregulates the master regulator of melanogenesis, microphthalmia-associated transcription factor (MITF), which targets key genes involved in melanogenesis, thereby inhibiting α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Phosphorylation of the cAMP response element-binding protein, which acts as a co-activator of MITF gene expression, is attenuated by anhydrous alum, resulting in compromised MITF transcription. Notably, anhydrous alum promoted extracellular signal-regulated kinase phosphorylation, leading to the impaired nuclear localization of MITF. Overall, these results demonstrated the generation and mode of action of anhydrous alum in B16F1 cells, which constitutes a promising option for cosmetic or therapeutic use.


Assuntos
Melaninas , alfa-MSH , Melaninas/metabolismo , alfa-MSH/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...